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CLIFFORD MULTIPLICATION AND f-STRUCTURES

CLARK JEFFRIES

1. Introduction

M. F. Atiyah [1], [2] has neatly applied Clifford multiplication of exterior
forms on (smooth, compact) Riemannian manifolds to certain reduction prob-
lems of the structure groups of tangent bundles, and considered Clifford multi-
plication by orientation forms associated with global splittings of tangent
bundles into subbundles, that is, plane fields.

We suppose an m-dimensional manifold M admits a (1,1)-tensor solution f
of f* + f = O with (constant) rank 2! > 0, that is, an f-structure. One may
choose a Riemannian structure ¢ for M so that f is skew. Thus the tangent
bundle T(M) of M splits globally as the sum of ker f and the orthogonal com-
plement ker f+, on which f induces an almost complex structure. Associated
with f and ¢ is a 2-form . The purpose of this paper is to study Clifford
multiplication by « and the orientation form (A )" of the plane field ker f-.

The existence of an f-structure is, of course, equivalent to the reduction of
the structure group of T(M) from &(m) to O(n — 2I) x %(l). The literature
devoted to f-structures and related topics is extensive, beginning, it seems, with
K. Yano [4].

2. Algebraic considerations

First we review Clifford multiplication. Clifford multiplication of cross sec-
tions of the exterior algebra A of M depends upon the choice of Riemannian
structure . We consider ¢ as extended throughout the tensor algebra of M.
Right and left Clifford multiplications are algebra homomorphisms from cross
sections of A to function-linear cross sections of Hom (4, A4). Suppose « is a
p-form and 3 a g-form. Define the adjoint of exterior multiplication A as fol-
lows. If p < g, then &« Vv § = 0. If p > g, then

aV =598 e,

where {g,} is a local orthonormal basis of the p — g floor of 4. This extends
to a global definition of « \V 3. If v is a I-form and « is a p-form, then define
the Clifford product v-¢w as v = ¢ Na — a \V ©. If v, ---, v, are ortho-
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normal 1-forms, then define (v, A -+« A v)-a = 4,-(- - - (¥,-@)- - -). Clearly
this extends to a global multiplication, Clifford multiplication, for any pair of
cross sections « and 8 of 4. This leads to right and left Clifford multiplications
R and L; thatis, a-8 = Ry(a) = L,(). Clifford multiplication is associative,
so R; and L, always commute.

Now suppose v, and v, are local orthonormal 1-forms. Then locally,

where here and hereafter / denotes the identity transformation in whatever
context it may occur. Also, R, is skew with respect to the natural extension
of  to Hom (4, 4). Note that R, R,, = —R,,R,, and R, ,,, = R,.R,,. Lastly,
va: Aeven — Aodd and va: Aodd — Aeven.

Given a global oriented plane field on M of dimension k, we may locally
express a (unit) orientation form A for the plane field as some exterior product
A=v; N\ - N\ v of orthonormal 1-forms. Thus R, islocally R, - - - R,.R,,,
so globally R%E = +1if k1 =0,3 mod 4 and R, = —Jif k=1, 2 mod 4.
Such operators were used extensively in [2].

Now suppose M admits an f-structure f, an adapted Riemannian structure
@, and an associated 2-form o all as in the Introduction.

We first derive a minimal polynomial satisfied by R,. The two lemmas which
follow may be proved easily using the following fact: Given two vector space
homomorphisms which commute and are almost complex, there is a natural
splitting of the vector space into two subspaces with the homomorphisms equal
on one subspace and additive inverses on the other.

Lemma 1. The sum J of 2p + 1 commuting almost complex vector space
homomorphisms (not necessarily distinct) satisfies

FF+7FD=0.
jodd,1<j<2p+1
Lemma 2. The sum J of 2p commuting almost complex vector space
homomorphisms satisfies

P+ 7D =0,

Jeven,0<5<2p
that is,

J 11 JF+7FD=0.
jeven,2<i<2p
Note that one may always choose an inner product so that each of the given
almost complex homomorphisms is skew, and hence so that J is skew. Now
since w may be locally expressed as v, A\ ¥, + vs AV, + -+ 4 Uy A Vas
it follows that R, may be locally expressed as the sum of / commuting almost
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complex structures, namely R, = Ry, + -+ + Ryynea,. In view of
Lemmas 1 and 2, we have
Lemma 3.

RE+7D=0 forodd !,

jodd,1< <1

R, 1 R +7D=0 for evenl .

jeven,2<i<i

Furthermore, these are minimal polynomials for R,. For if we apply R,
repeatedly to the constant O-form 1, then we have R:(1) = (A w)® + (forms of
degree less than 2s).

Now let J be the sum, and K be the product of 2p commuting almost com-
plex vector space homomorphisms. Thus K* = I. Using an inner product with
respect to which each of the almost complex homomorphisms is skew, consid-
er the orthogonal +1 and —1 eigenspaces of K. Since J and K commute, we
may write J =J_ + J_ where J_ and J_ denote the restrictions of J to the
eigenspaces. We have

Lemma 4. J_ restricted to the +1 eigenspace of K satisfies
J. 11 (E+@Dn=0,

+

jeven,2gi<yp

and J _ restricted to the — 1 eigenspace of K satisfies

M @+@D=0.

jodd, 17 <p

Again the proof uses only elementary linear algebra and is omitted.
It is clear that the relations in Lemma 4 hold globally for R, and R, pro-
vided rank f = 2/ = 0 mod 4.

3. Analytic results

We assume henceforth that the dimension of M is congruent to 1 mod 4,
and that M is compact and orientable. Let B denote a unit orientation form
for M. Let d and d* denote the usual exterior and coexterior derivatives. It
may be shown that L} = —7 and that L, commutes with d + d* when rest-
ricted to 4**. We may form an elliptic differential operator T of degree one
by setting T = Lg(d + d*): A°® — f*°». Now the symbol of d + 4* is
» —=1L. Thus, since R and L commute, R,, Ave cOmmutes with T in highest,
that is, first order terms, where v, /A v, is a local unit 2-form. Similarly any
real polynomial of images of such unit 2-forms commutes with. T in first order
terms. Recall that the real Kervaire semi-characteristic of an odd-dimensional
manifold is the sum mod 2 of the even Betti numbers of the manifold. Thus
(dim ker T) mod 2 = k(M) the real Kervaire semi-characteristic of M. Finally,
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note that T is skew with respect to the usual extension of ¢ to the (infinite-
dimensional) real vector space 4°** over (compact) M.
Next we prove
Theorem 1. Suppose R is a cross section of Hom( A", A°***) which com-
mutes with T in first order terms. If R satisfies a minimal polynomial p(x) =
x4+ --- + bx + by with s distinct roots, real or complex, then we may
choose constants a;;3i =0, ---,s — 1;j=1,---,5 — 1, such that the new
differential operator

S=T+ > a,;R(TR’ — R’T)
7
commutes with R. Furthermore, if the adjoint of R is a polynomial in R, then
S is skew.

Proof. We note that any such § has the same first order terms as 7.

Next we derive the numbers {a,;} in terms of p(x). One may regard TR’ —
RIT as the derivative of R7 with respect to 7. Thus we will define S so that the
derivative of R with respect to S is 0. We generally follow our proof of a dif-
ferent version of this result involving connections in vector bundles given in
[3, Theorem 1].

Qur first step is to complexify the real vector bundle A so that if A, .-, 2,
are the distinct roots of p(x), then R = },_, ....s 2,7, Where {z,} are projec-
tions onto the eigenbundles of R. Qur last step will be to take the real parts
of the constants {a;;} which we derive, and this will obviously suffice.

Each =, may be described explicitly as follows. Define new complex poly-
nomials p,(x) by

Pa(x) =b];I (x—2) .

Then », = pa(la)'lpa(R).~ Thus z,7y = 6ap7e, 5,7, =1, and R = 3 A,7,.
Define a new operator S on the complexification of /4 by

~ s s
S=T+ ZITG{TTCG — 7, T} = ZlﬁaTﬁa .
a= a=

Now for each =, Sry — m,S' =0, so SR — RS = 0. Note also that if the
adjoint of R is a polynomial in R, that is, if the complex ajoint of each =, is
itself, then the complex adjoint of § is —§.

Now define complex numbers ¢;;;i=1,---,8;j=1,---,5 — 1, by z; =
>, ¢;R7. It follows that

S=T+ 3 S a,RITR — RIT},
i=0 j=1

where a;; = 2 io; CisCrye
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Clearly the real part S of § on /°**" satisfies SR — RS = 0 and has the same
first order terms as 7. Also, S is skew provided the adjoint of R is a poly-
nomial in R. q.e.d.

In the special case p(x) = x* + 1, S =T — }{TR — RT} = }{T + RTR™"},
as originally used in [2, p. 16].

Theorem 1 simply implies that the (real finite dimensional) kernel of S
admits R. We will be concerned with the case where R is skew and the case
where (R) [1] 5= O unless p divides p, that is, the case when p remains the
minimal polynomial of R in ker S.

4. Applications

Among other results, Atiyah showed that if a compact, orientable, (=1
mod 4)-dimensional manifold admits an orientable plane field of dimension
=2 mod 4 (or, complementarily =3 mod 4), then the real Kervaire semi-
characteristic of the manifold vanishes. We next derive some associated results
for f-structures with rank =0 mod 4.

Theorem 2. Suppose M admits an f-structure of rank 4l with associated 2~
form w and associated cross section R, of Hom (A°™®, A°™*), Let S be defined
in terms of R, and T according to Theorem 1. Then the dimension mod 2 of
the kernel of R, in the kernel of S is k(M). ’

Proof. R, is skew and commutes with 7" in first order terms. Therefore S
defined from Theorem 1 is a skew elliptic differential operator with the same
first order terms as 7. Using the stability of the mod 2 index as explained in
[2], it follows that dim ker S = dim ker T mod 2. According to Lemma 2,

r=x [ &+
jeven,2<5 g2l
has the property p(R,) = 0. Applying R, to the constant O-form 1 show that
p{x) is the minimal polynomial of R, in ker S as well as in /***. Thus

dim ker R, in ker § = dimker S = dimker T = k(M) mod 2. q.e.d.

In view of Lemma 1, the analogous considerations for an f-structure of
rank 4/ 4+ 2 would lead to the vanishing of k{(M), a consequence already im-
plied just by the existence of an orientable (4] + 2)-plane.

Now suppose M admits two f-structures e and f, both of rank 4/ and both
skew with respect to ¢. Suppose kere = ker f. Let ¥ and » denote the as-
sociated 2-forms. We will say such f-structures are orientation complementary
provided (AY)* = —(Aw)* (necessarily (AY)* = =(Aw)®).

Theorem 3. If M admits two orientation complementary f-structures of
rank 41, then k(M) = 0.

Proof. Denote the orientation form (A+)* for the 4l-plane kere by 4.
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Consider the cross sections R, R,, and R, of Hom (4°®, 4****). Define a new
cross section R by

R = %(I—'RA)R,J, + %(I-‘]- RA)Rm .

It follows from Lemma 4 that on the —1 eigenvalue of R, in A, R, has
minimal polynomial

= I & +@)).
jodd,1<s<1
Similarly, p(x) is the minimal polynomial of R, on the 4-1 eigenbundle of R,.
Thus the minimal polynomial of R is p(x). Now R,, R, and R, and hence R,
all commute with T in first order terms. Since R, is symmetric and R, and
R, are skew, R is skew. Applying Theorem 1 leads to a skew elliptic operator
S, which commutes with R and has the same first order terms as 7. In view
of the minimal polynomial of R, dim ker S is even. Thus k(M) = 0. q.e.d.

Note that if ¢ and f are two orientation complementary f-structures of rank
4, then the associated 4-plane necessarily splits as the sum of two 2-planes
with ¢ = f on one and e = —f on the other. Since the existence of an orientable
2-plane implies k(M) = 0, Theorem 3 is of no interest for orientation comple-
mentary f-structures of rank 4.

On the other hand, spheres S*** of dimension greater than seven and con-
gruent to 3 mod 4 admit triplets of f-structures with rank 4/ and equal kernels.
Since k(S§*7%) = 1, Theorem 3 implies no two such f-structures could be orien-
tation complementary.
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